标题: [挑战]解数独程序与数独题目生成 [打印本页]
作者: 523066680 时间: 2017-9-12 20:39 标题: [挑战]解数独程序与数独题目生成
本帖最后由 523066680 于 2017-9-24 16:14 编辑
以下是从某网站提取的5种难度的数独游戏(难度从1-5,循着网站是可以找到答案的):
001000008800010532750024090005302060670500004010780900098053406426179803537460219
503092000700000008006007310020600000065000730007043500000706102070000800400009000
700306000000000050060000018000081000000000000900000200000200900050400000080000007
030000001200806000000005000000000000000000650043070000600002080090000000000010003
010000200300800000000504000800090000000070120500000000000000000020130000400000005
写程序对这五个数独题目求解,并计算解每道题的时间消耗。
编程语言:不限
------------------------------------------ 2017-09-18补充 ------------------------------------------
如果解决上面五道题耗时不超过1秒,可以尝试批量解题库中的题,并统计时间消耗。
题库下载:http://523066680.ys168.com/
Perl/数独/数独题库200801-201709_含答案.zip
题库按键值对存储,key 是时间戳,value 中前81个字符是题目,后81个字符是唯一答案。
nd0 - nd4 表示不同的难度。
作者: 523066680 时间: 2017-9-13 11:24
本帖最后由 523066680 于 2017-9-14 16:57 编辑
脚本,每填入一个数字,重新判断并缩小范围,第四道数独花了五百多秒 ……
- 2,6,1,9,3,5,7,4,8
- 8,4,9,6,1,7,5,3,2
- 7,5,3,8,2,4,6,9,1
- 9,8,5,3,4,2,1,6,7
- 6,7,2,5,9,1,3,8,4
- 3,1,4,7,8,6,9,2,5
- 1,9,8,2,5,3,4,7,6
- 4,2,6,1,7,9,8,5,3
- 5,3,7,4,6,8,2,1,9
- Game level: 1, time used: 0.000s
-
- 8,3,6,9,4,7,5,2,1
- 2,5,1,8,3,6,4,9,7
- 4,7,9,1,2,5,8,3,6
- 9,6,8,2,5,1,3,7,4
- 1,2,7,4,8,3,6,5,9
- 5,4,3,6,7,9,2,1,8
- 6,1,4,3,9,2,7,8,5
- 3,9,5,7,6,8,1,4,2
- 7,8,2,5,1,4,9,6,3
- Game level: 4, time used: 537.594s
复制代码
--------------- 2017-09-14 蜜汁 Trick ----------------- 8,3,6,9,4,7,5,2,1
- 2,5,1,8,3,6,4,9,7
- 4,7,9,1,2,5,8,3,6
- 9,6,8,2,5,1,3,7,4
- 1,2,7,4,8,3,6,5,9
- 5,4,3,6,7,9,2,1,8
- 6,1,4,3,9,2,7,8,5
- 3,9,5,7,6,8,1,4,2
- 7,8,2,5,1,4,9,6,3
- [Finished in 2.2s]
复制代码
作者: CrLf 时间: 2017-9-13 23:52
这个用暴力解肯定慢啦...这是我解数独的基本思路,除了第一步,其他的都是嵌套循环的步骤
1、生成草稿表
2、检查纵、横、九宫格内唯一数,填写并从相关单元格的草稿中去除该数
3、根据草稿,排除某九宫格中唯一行或者唯一列对其他行列的影响
4、根据数独“只有唯一解”的规则排除平行对称基本型
5、setlocal,寻找连锁反应最多的点进行暴力解(以只有两种可能性的点为佳)
作者: 523066680 时间: 2017-9-14 09:42
本帖最后由 523066680 于 2017-9-14 17:44 编辑
回复 3# CrLf
也不是完全的暴力跑,前三项规则已经应用了,后两项还没有试过。题目的前两道数独秒出结果,第四道耗时很长。
作者: slore 时间: 2017-9-14 21:44
level 3:3,7,9,6,8,8,26 秒
level 5:52,17,85,64,57,34,82,51,14,35 秒
level 4:503,1402,690 秒
8 3 6 9 4 7 5 2 1
2 5 1 8 3 6 4 9 7
4 7 9 1 2 5 8 3 6
9 6 8 2 5 1 3 7 4
1 2 7 4 8 3 6 5 9
5 4 3 6 7 9 2 1 8
6 1 4 3 9 2 7 8 5
3 9 5 7 6 8 1 4 2
7 8 2 5 1 4 9 6 3
找到了9年前用回溯法解数独的VBS脚本,选择下一个可用时,是随机抽取一个,
所以运算时间不固定,有运气成分在里面.
链接: https://pan.baidu.com/s/1EGOqaIQyPy5yZd0unXLMuA?pwd=sycn
不过,level 5运行10次也在1分钟内,level 4运行了3次,长的达26分钟?
level你是不是写反了.
另外,有个数独的小flash程序,做的挺好的,简单,而且各个格子4个角还可以临时设置候选值.
链接: https://pan.baidu.com/s/1GYg2RMSW7X-1mQQqcw1RHg?pwd=8sjh
作者: slore 时间: 2017-9-14 21:52
居然是按字符串存储和处理的,如果用int估计会变快吧.
作者: 523066680 时间: 2017-9-15 09:27
本帖最后由 523066680 于 2017-9-15 09:53 编辑
回复 5# slore
题库在这个网站抓的 免费的在线数独
http://bbs.bathome.net/thread-45401-1-1.html
http://523066680.ys168.com/
Perl/数独/数独题库200801-201709_含答案.zip
难度分为 入门,初级,中级,高级,骨灰级。1楼的题来自每个等级的第一道题目。这个等级划分我也觉得有点问题……
初级的比如:数独 - 2008年1月6日 - 初级
000600500001007000004000000050002000060000800000001007080900000000500001007000004
比同等级的其他题目明显数字要少,可选数字可能性更多。
作者: 523066680 时间: 2017-9-15 10:09
Rosettacode 有一段 Perl 代码非常简短,不过这段代码因为简短而牺牲了性能,有很多冗余的循环。
http://rosettacode.org/wiki/Sudoku#Perl
作者: 523066680 时间: 2017-9-16 09:32
本帖最后由 523066680 于 2017-9-16 10:13 编辑
初始版本- =info
- 解数独 初版
- 523066680 2017-09
- =cut
-
- use IO::Handle;
- use Time::HiRes qw/time/;
- STDOUT->autoflush(1);
-
- my @games =
- qw/
- 001000008800010532750024090005302060670500004010780900098053406426179803537460219
- 503092000700000008006007310020600000065000730007043500000706102070000800400009000
- 700306000000000050060000018000081000000000000900000200000200900050400000080000007
- 030000001200806000000005000000000000000000650043070000600002080090000000000010003
- 010000200300800000000504000800090000000070120500000000000000000020130000400000005
- /;
-
- our @unsolve;
- our $block = []; #区块引用
- my $mat = [[]];
- my $level = 0;
- my $time_a;
-
- #创建区块引用,以便于操作
- make_block_refs( $block, $mat );
-
- while ( $level <= $#games )
- {
- #字符串转矩阵
- str_to_mat( $games[$level] , $mat );
- $time_a = time();
-
- #设置 @unsolve 数组,存储空缺元素的坐标
- set_unsolve_array($mat);
- solve($mat, 0);
-
- print_mat($mat);
- printf "Game level: %d, time used: %.3fs\n\n", $level+1, time() - $time_a;
- $level++;
- }
-
- sub solve
- {
- my ($mat, $prev, $lv) = @_;
- my @possible;
- my ($row, $col);
- my $current;
-
- for my $i ( $prev .. $#unsolve )
- {
- ($row, $col) = @{$unsolve[$i]};
- if ( $mat->[$row][$col] == 0 )
- {
- $current = $i;
- @possible = get_possible_num( $mat, $row, $col );
- last;
- }
- }
-
- if ( not defined $current ) { return 1 }
- else
- {
- return 0 if ( $#possible < 0 )
- }
-
- my $res = 0;
- for my $p ( @possible )
- {
- $mat->[ $row ][ $col ] = $p;
- $res = solve($mat, $current+1, $lv+1);
- last if ($res == 1);
- }
-
- #使对应单元恢复为0 否则影响递归判断
- $mat->[$row][$col] = 0 if ($res == 0) ;
- return $res;
- }
-
- sub get_possible_num
- {
- our ($block, %hash);
- my ($mat, $row, $col) = @_;
- my %possible = (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9);
-
- #排除元素
- for my $n ( 0 .. 8 )
- {
- delete $possible{ $mat->[$n][$col] };
- delete $possible{ $mat->[$row][$n] };
- delete $possible{ ${$block->[$row/3][$col/3][$n]} };
- }
-
- return sort keys %possible;
- }
-
- sub get_possible_num_2
- {
- our ($block, %hash);
- my ($mat, $row, $col) = @_;
- my @possible = (0,1,2,3,4,5,6,7,8,9);
-
- #区块坐标
- my $blockrow = int($row/3);
- my $blockcol = int($col/3);
-
- #排除元素
- for my $n ( 0 .. 9 )
- {
- $possible[ $mat->[$n][$col] ] = 0;
- $possible[ $mat->[$row][$n] ] = 0;
- $possible[ ${$block->[$blockrow][$blockcol][$n]} ] = 0;
- }
-
- return grep { $_ } @possible;
- }
-
- sub set_unsolve_array
- {
- our ( @unsolve );
- my ($mat) = @_;
-
- @unsolve = ();
- for my $row ( 0..8 )
- {
- for my $col ( 0..8 )
- {
- if ( $mat->[$row][$col] == 0 )
- {
- push @unsolve, [ $row, $col, [get_possible_num( $mat, $row, $col )] ];
- }
- }
- }
-
- #根据可选数字的数量由少到多排序
- #@unsolve = sort { $#{$a->[2]} <=> $#{$b->[2]} } @unsolve;
- }
-
- sub make_block_refs
- {
- my ($block, $mat) = @_;
-
- #将数独的九个宫对应的引用分组保存
- for my $r ( 0..2 )
- {
- for my $c ( 0..2 )
- {
- for my $rr ( $r*3 .. $r*3+2 )
- {
- for my $cc ( $c*3 .. $c*3+2 )
- {
- push @{ $block->[$r][$c] }, \$mat->[$rr][$cc];
- }
- }
- }
- }
- }
-
- sub str_to_mat
- {
- my ( $str, $mat ) = @_;
- my $idx = 0;
-
- for my $row ( 0 .. 8 )
- {
- for my $col ( 0 .. 8 )
- {
- $mat->[$row][$col] = substr( $str, $idx++, 1 );
- }
- }
- }
-
- sub print_mat
- {
- my ($mat) = @_;
- grep { print join(",", @{$mat->[$_]} ),"\n" } ( 0..8 );
- }
复制代码
Game level: 1, time used: 0.001s
Game level: 2, time used: 0.002s
Game level: 3, time used: 11.373s
Game level: 4, time used: 432.737s
Game level: 5, time used: 24.571s
结果相当难看,有空试试 Dancing Links
作者: 523066680 时间: 2017-9-18 16:13
本帖最后由 523066680 于 2017-9-18 16:27 编辑
最近换了个方案,遇到难度高的题目时比原来的方案快得多(但还是没有Rubyish @Chinaunix 的代码快)
给定一个题目,判断 1-9 每个数字的全局分布情况(可能性)。
比如1可能分布的情况有6种,测试每一种,把9个1全部填入数独,然后继续测试其他数字的分布。
题目
140968000000000900600057300000000007300000840000196500070000405406010030000000000
数字1的可能分布情况
140968000000001900600057310010000007300000841000196500071000405406010030000000100
140968000000001900600057310000000107310000840000196500071000405406010030000000001
140968000000001900600057301000000107310000840000196500071000405406010030000000010
140968000000001900600057301000000107310000840000196500070000415406010030001000000
140968000000001900600057301000000107301000840000196500070000415406010030010000000
140968000000001900600057301000000017310000840000196500071000405406010030000000100
完整代码:- =info
- 方案 - 遍历数字分布情况
- 523066680 2017-09
- =cut
-
- use File::Slurp;
- use IO::Handle;
- STDOUT->autoflush(1);
-
- # my $gamedata = eval read_file("../sudoku_nd1.txt");
- # grep { push @games, $gamedata->{$_} } sort keys %$gamedata;
-
- @games =
- qw/
- 001000008800010532750024090005302060670500004010780900098053406426179803537460219
- 503092000700000008006007310020600000065000730007043500000706102070000800400009000
- 700306000000000050060000018000081000000000000900000200000200900050400000080000007
- 030000001200806000000005000000000000000000650043070000600002080090000000000010003
- 010000200300800000000504000800090000000070120500000000000000000020130000400000005
- /;
-
- our @order;
- our $answer_mat = [[]];
- my $mat;
- my $res;
- my $allcase;
- my $answer_str;
-
- #坐标对应区块位置的表
- our @blk = map { int($_ / 3) } ( 0..8 );
-
- while ( $index <= $#games )
- {
- $mat = [[]];
- $time_a = time();
- str_to_mat( $games[$index] , $mat );
-
- $allcase = [ map { [] } (0..9) ];
- grep { possible_mat($mat, $_, $allcase->[$_], 0) } (1..9);
- @order = sort { $#{$allcase->[$a]} <=> $#{$allcase->[$b]} } ( 0 .. 9 );
-
- $res = recursive( $mat, 1 ); #起点为1,下标 0占位
-
- if ($res == 1)
- {
- print_mat_inline( $answer_mat );
- }
- else { die "false\n" }
-
- printf "Game index: %d, time used: %.3fs\n\n", $index, time() - $time_a;
- $index++;
- }
-
- sub recursive
- {
- our (@order, $answer_mat);
-
- my ( $mat, $lv ) = @_;
- my @case;
-
- if ( $lv > 9 )
- {
- $answer_mat = $mat;
- return 1;
- }
-
- $target = $order[$lv];
- possible_mat($mat, $target, \@case, 0);
-
- my $t_mat = [[]];
- my $res = 0;
-
- for my $s ( @case )
- {
- str_to_mat( $s, $t_mat );
- $res = recursive( $t_mat, $lv+1 );
- last if ($res == 1);
- }
-
- return $res;
- }
-
- sub possible_mat
- {
- my ( $mat, $target, $aref, $lv ) = @_;
- # level means row
-
- my $str;
- if ($lv == 9)
- {
- $count++;
- push @$aref, mat_to_str($mat);
- return 1;
- }
-
- my @cols = get_possible_column( $mat, $lv, $target );
-
- my $res = 0;
- my $ever;
- for my $c ( @cols )
- {
- $ever = $mat->[$lv][$c];
- $mat->[$lv][$c] = $target;
- $res = possible_mat( $mat, $target, $aref, $lv+1 );
- $mat->[$lv][$c] = $ever;
- }
-
- return $res;
- }
-
- sub get_possible_column
- {
- our @blk;
- my ( $mat, $row, $target ) = @_;
- my @cols = ( 0..8 );
-
- for my $c ( 0..8 )
- {
- #如果当前行已经存在这个数字,则直接返回这个数字的位置。
- if ( $mat->[$row][$c] == $target )
- {
- return ( $c );
- }
- elsif ( $mat->[$row][$c] != 0 )
- {
- $cols[$c] = -1;
- }
-
- for my $r ( 0..8 )
- {
- if ( $mat->[$r][$c] == $target )
- {
- $cols[$c] = -1;
- if ( $blk[$r] == $blk[$row] )
- {
- $cols[ $blk[$c] * 3 + 0] = -1;
- $cols[ $blk[$c] * 3 + 1] = -1;
- $cols[ $blk[$c] * 3 + 2] = -1;
- }
- }
- }
- }
-
- return grep { $_ != -1 } @cols;
- }
-
- sub str_to_mat
- {
- my ( $str, $mat ) = @_;
- my $idx = 0;
-
- for my $row ( 0 .. 8 )
- {
- for my $col ( 0 .. 8 )
- {
- $mat->[$row][$col] = substr( $str, $idx++, 1 );
- }
- }
- }
-
- sub mat_to_str
- {
- my ( $mat ) = @_;
- return join("", map { join("", @{$mat->[$_]} ) } (0..8));
- }
-
- sub print_mat
- {
- my ($mat) = @_;
- grep { print join(",", @{$mat->[$_]} ),"\n" } ( 0..8 );
- }
-
- sub print_mat_inline
- {
- my ($mat) = @_;
- grep { print join("", @{$mat->[$_]} ),"" } ( 0..8 );
- print "\n";
- }
复制代码
261935748849617532753824691985342167672591384314786925198253476426179853537468219
Game index: 0, time used: 0.000s
513892467749361258286457319324675981165928734897143526958736142672514893431289675
Game index: 1, time used: 0.000s
718356492492817653563924718624781539835692174971543286147238965356479821289165347
Game index: 2, time used: 0.000s
836947521251836497479125836968251374127483659543679218614392785395768142782514963
Game index: 3, time used: 0.000s
718963254354827961296514873872391546943675128561248739187456392625139487439782615
Game index: 4, time used: 1.000s
跑完 sudoku_nd0.txt 三千多道题需要十多秒,跑完 sudoku_nd4.txt 大约六百秒。
CU Rubyish 的代码,跑完 nd0 零点几秒,nd4 一百多秒
作者: slore 时间: 2017-9-19 07:59
旋转90度,180度等,开4个进程并行跑,应该会某个路线快些,只用把初始数据按规律变换即可。
再有,4个线程的某单元格的候选项目共享,更快得出唯一解。
再有,改变搜索前进方向,上面旋转数独盘,左右,上下,4个方向同时了,还有顺时旋转前进,逆时针方向,先斜线,先小格等方向,可以开更多线程。
作者: 523066680 时间: 2017-9-20 00:13
回复 11# slore
线程的方案留到最后,单线程仍然有更快的算法,快到解 sudoku_nd4.txt 所有题只要十多秒。
作者: slore 时间: 2017-9-20 10:02
回复 12# 523066680
单纯考虑算法的话,肯定有更优的,但是 多线程对于现在大内存,多核CPU才是更好的利用,而且很多问题都可以采用这个方法来提高。
至于探索路径,不一定非要0~81这个顺序,可以把每个格子的候选项,从小到大排列,按这个数据填,有大概率先填入正确的数据,可以减少尝试次数吧。那天有时间了ruby写下试试。
作者: slore 时间: 2017-9-20 13:02
本帖最后由 slore 于 2017-9-20 13:03 编辑
- class Soduku
- def initialize(str)
- @matrix = 9.times.map{[0]*9}
- str.reverse! <-只加了一句,LEVEL4立马难度变低了
- nums = str.split('').map(&:to_i)
- ...
- end
复制代码
[3, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 9, 0]
[0, 8, 0, 2, 0, 0, 0, 0, 6]
[0, 0, 0, 0, 7, 0, 3, 4, 0]
[0, 5, 6, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 5, 0, 0, 0, 0, 0]
[0, 0, 0, 6, 0, 8, 0, 0, 2]
[1, 0, 0, 0, 0, 0, 0, 3, 0]
5.069903 秒
[3, 6, 9, 4, 1, 5, 2, 8, 7]
[2, 4, 1, 8, 6, 7, 5, 9, 3]
[5, 8, 7, 2, 9, 3, 4, 1, 6]
[8, 1, 2, 9, 7, 6, 3, 4, 5]
[9, 5, 6, 3, 8, 4, 7, 2, 1]
[4, 7, 3, 1, 5, 2, 8, 6, 9]
[6, 3, 8, 5, 2, 1, 9, 7, 4]
[7, 9, 4, 6, 3, 8, 1, 5, 2]
[1, 2, 5, 7, 4, 9, 6, 3, 8]
作者: slore 时间: 2017-9-20 16:09
至于探索路径,不一定非要0~81这个顺序,可以把每个格子的候选项,从小到大排列,按这个数据填,有大概率先填入正确的数据,可以减少尝试次数吧。
错了,如果按候选项探索的话,比如, [0,0]点可以用5和4,[8,8]可以用1,3,
都是最小的2个候选,但是填写0,0,在填8,8,变成了散点,如果50%概率选错了的话,
其他格子,无效探索反而变得多了,填写的多,但是排除无效值的情报却少了。
探索改成下面这样。
先选择出有最少候选项的位置,然后对它相同X,Y和Z区域的 格子 权值-1。
(假设最小的这个格子我们填入了一个数字,被影响的其他格子,候选项-1)
然后,被影响的格子里面,权值最低的(候选项-1后,最小的),
是我们接下来优先探索的,同理,整理出,每次填入一个单元格,
受其影响的,候选项最少的格的探索路径。这样填入数据之间有关联,
如果填入了错误值,可以更早地回溯。
VBS代码移植为ruby脚本的,只在处理前,修改这1处,从几百秒到稳定10秒LEVEL4的结果输出,
很大的改善方案。
ans = candidate(x, y)
return false if ans.size <= 0
v = ans[0] #取出候选的第一个
ans.delete v
@matrix[x][y] = v
改成, v = ans.sample #候选中随机抽1个,LEVEL4的结果,2秒~18秒之间 - #魔法CODE
- str.reserse!
- v = ans.sample
复制代码
- sort_seq = []
- while
- sort_seq.push @solve_seq[min_seq]
- x = @solve_seq[min_seq][0]
- y = @solve_seq[min_seq][1]
- z = ((x / 3) * 3) + (y / 3)
- @solve_seq.delete_at(min_seq)
-
- break if @solve_seq.size == 0
- min = 10
- min_seq = -1
- @solve_seq.each_with_index do |seq, i|
- zz = ((seq[0] / 3) * 3) + (seq[1] / 3)
- if seq[0] == x || seq[1] == y || zz == z
- seq[2] -= 1
- if seq[2] < min
- min = seq[2]
- min_seq = i
- end
- end
- end
- end
- p sort_seq
- @solve_seq = sort_seq
复制代码
作者: 523066680 时间: 2017-9-20 16:36
本帖最后由 523066680 于 2017-9-20 20:34 编辑
回复 15# slore
对于回溯法,有一个优化很有效果。示意图(注意除了中间有个独立的候选数字2,右上角还有个框选的数字8):
程序给定的单元候选数字中,大多单元格有多个可选数字,但是可以进一步排除。例如:
如果累计一行中的所有候选数,某个数字只出现一次,那么这个数字就是必选数字。同样,一列、一宫(3x3 block)的区域内也是如此。
我为程序增加了一个while 循环,反复筛选并填充唯一的数字,直到再也没有,然后才开始递归解题。
Sudoku:
3,0,0,0,1,0,0,0,0
0,0,0,0,0,0,0,9,0
0,8,0,2,0,0,0,0,6
0,0,0,0,7,0,3,4,0
0,5,6,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0
0,0,0,5,0,0,0,0,0
0,0,0,6,0,8,0,0,2
1,0,0,0,0,0,0,3,0
Fill only one possible cells
R:1 C:8 Fill:3
R:3 C:5 Fill:6
R:3 C:8 Fill:5
R:6 C:5 Fill:1
R:0 C:1 Fill:6
R:1 C:4 Fill:6
R:6 C:0 Fill:6
R:8 C:6 Fill:6
R:5 C:7 Fill:6
R:8 C:2 Fill:5
R:8 C:8 Fill:8
R:6 C:2 Fill:8
R:6 C:7 Fill:7
Result:
3,6,0,0,1,0,0,0,0
0,0,0,0,6,0,0,9,3
0,8,0,2,0,0,0,0,6
0,0,0,0,7,6,3,4,5
0,5,6,0,0,0,0,0,0
0,0,0,0,0,0,0,6,0
6,0,8,5,0,1,0,7,0
0,0,0,6,0,8,0,0,2
1,0,5,0,0,0,6,3,8
Solve:
3,6,9,4,1,5,2,8,7
2,4,1,8,6,7,5,9,3
5,8,7,2,9,3,4,1,6
8,1,2,9,7,6,3,4,5
9,5,6,3,8,4,7,2,1
4,7,3,1,5,2,8,6,9
6,3,8,5,2,1,9,7,4
7,9,4,6,3,8,1,5,2
1,2,5,7,4,9,6,3,8
time used: 0.211s
作者: slore 时间: 2017-9-20 20:21
回复 16# 523066680
VBS当时写代码,就有这个逻辑.先CreatePlan里面有presolvecount,然后才SolvePanes递归的.
作者: bbaa 时间: 2017-9-23 19:56
我来了,等下用我之前的生成类试试
作者: bbaa 时间: 2017-9-23 21:18
回复 18# bbaa
随机法真的 身败名裂- Allowed memory size of 134217728 bytes exhausted (tried to allocate 40 bytes)
复制代码
作者: 523066680 时间: 2017-9-24 15:49
本帖最后由 523066680 于 2017-9-24 16:09 编辑
回复 19# bbaa
对于题目和结果判断,你先用现成的题库弄上网站跑跑看?我前面发的题库分为5种难度等级,你可以随机抽取。
这些题只有一种答案,也都在文件里了,检验方便。(虽然这样提供了作弊条件,可以直接POST现有答案,不过也就是试试效果)
作者: search_Sudoku 时间: 2017-10-2 02:02
闲时再弄弄, JS 还有些冗余的变量及逻辑
保存为 htm 文件, 浏览器 F12 控制台看运行- <script>
- var cntEmptyCell = 9 * 9;
- var schPath = [];
- var P = [[], [], [], [], [], [], [], [], []];
- // i 行 j 列
- for (let i = 0; i < 9; i++)
- for (let j = 0; j < 9; j++) {
- P[i][j] = {fill: 0, maybe: 0x1FF, choose: 9, block: (Math.floor(i / 3) * 3 + Math.floor(j / 3))};
- }
- var problems = [
- '001000008800010532750024090005302060670500004010780900098053406426179803537460219',
- '503092000700000008006007310020600000065000730007043500000706102070000800400009000',
- '700306000000000050060000018000081000000000000900000200000200900050400000080000007',
- '030000001200806000000005000000000000000000650043070000600002080090000000000010003',
- '010000200300800000000504000800090000000070120500000000000000000020130000400000005',
- '510000700076089000004000805400100007000030000090706010000460201047000300005000084'
- ];
- var problem;
- problem = problems[3];
- const LOOPCNT_CTRL = 50000;
- var LOOPCNT_OUTPUT_BEGIN = LOOPCNT_CTRL - 50;
- var a_p = Array.from(problem);
- var minchoose = 10, i_minchoose = 0, j_minchoose = 0;
- // 题面初始化
- for (let i = 0; i < 9; i++)
- for (let j = 0; j < 9; j++)
- if (a_p[i * 9 + j] - 0 != 0) {
- P[i][j].maybe = P[i][j].fill = 1 << (a_p[i * 9 + j] - 1);
- P[i][j].choose = 1;
- cntEmptyCell -= 1;
- for (let u = 0; u < 9; u++)
- if ((u != i) && (P[u][j].fill == 0)) {
- if ((P[u][j].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- P[u][j].choose -= 1;
- if (P[u][j].choose < minchoose) {
- minchoose = P[u][j].choose;
- i_minchoose = u;
- j_minchoose = j;
- }
- P[u][j].maybe &= ~(P[i][j].fill);
- }
- }
- for (let v = 0; v < 9; v++) {
- if ((v != j) && (P[i][v].fill == 0)) {
- if ((P[i][v].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- P[i][v].choose -= 1;
- if (P[i][v].choose < minchoose) {
- minchoose = P[i][v].choose;
- i_minchoose = i;
- j_minchoose = v;
- }
- P[i][v].maybe &= ~(P[i][j].fill);
- }
- }
- }
- g = P[i][j].block;
- // 3X3 块的左上角坐标
- r = Math.floor(g / 3) * 3;
- c = g % 3 * 3;
- for (let u = 0; u < 3; u++)
- for (let v = 0; v < 3; v++) {
- if (!(r + u == i && c + v == j) && (P[r + u][c + v].fill == 0)) {
- if ((P[r + u][c + v].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- P[r + u][c + v].choose -= 1;
- if (P[r + u][c + v].choose < minchoose) {
- minchoose = P[r + u][c + v].choose;
- i_minchoose = r + u;
- j_minchoose = c + v;
- }
- P[r + u][c + v].maybe &= ~(P[i][j].fill);
- }
- }
- }
- // console.log('F=' + a_p[i * 9 + j] + ', i=' + i + ', j=' + j + ', g=' + P[i][j].block + '\n');
- }
- console.log('题面初始化后\n');
- console.log('cntEmptyCell=' + cntEmptyCell + '\n');
- print_fill_intuitive();
- // 初始化尝试填数
- let try_num;
- try_num = 1 << 8;
- while ((try_num != 0) && ((P[i_minchoose][j_minchoose].maybe & try_num) == 0)) {
- try_num >>= 1;
- }
- if (try_num == 0) {
- throw 'error problem\n';
- }
- let maybe;
- let fail_flag = false;
- let success = false;
- let loopcnt = 0;
- // 节点状态:
- // NEW_POS: 填数未失败,新位置填第一个试数
- // NEXT_TRY: 失败换填下一个试数
- // UNDO_POS: 所有试数失败撤消填数
- let state_code = 'NEW_POS';
- do {
- loopcnt++;
- if (fail_flag) {
- // 撤消所有 SET_MAYBE
- while (schPath[0].type == 'SET_MAYBE') {
- P[schPath[0].row][schPath[0].col].maybe = schPath[0].oldMaybe;
- P[schPath[0].row][schPath[0].col].choose += 1;
- schPath.shift();
- }
- // 撤消 FILL_POS
- // 若 try_num 不是最后一个可试数,
- // try_num 取下一个可试数, fail_flag 设为 false
- if (schPath[0].type == 'FILL_POS') {
- i = schPath[0].row;
- j = schPath[0].col;
- P[i][j].fill = schPath[0].oldFill;
- P[i][j].choose = schPath[0].oldChoose;
- P[i][j].maybe = schPath[0].oldMaybe;
- if (schPath[0].oldFill == 0)
- cntEmptyCell += 1;
- // 下一个可试的数
- try_num = schPath[0].fillValue >> 1;
- schPath.shift();
- // 试探是否还有下一个可试填数
- while ((try_num != 0) && ((P[i][j].maybe & try_num) == 0)) {
- try_num >>= 1;
- }
- if (try_num != 0) {
- fail_flag = false;
- state_code = 'NEXT_TRY';
- } else {
- fail_flag = true;
- state_code = 'UNDO_POS';
- }
- }
- } else {
- if (state_code == 'NEW_POS') {
- if (cntEmptyCell == 0) {
- // 成功, 输出结果并退出
- console.log('\n\n' + 'SUCCESS! @ ' + 'loopcnt = ' + loopcnt + '\n\n' + 'problem and answer:\n\n' + PA_STR());
- print_fill_intuitive();
- // print_state();
- success = true;
- break;
- }
- minchoose = 10; // 准备搜索下一轮的最少选择位置
- i = i_minchoose;
- j = j_minchoose;
- // 初始化 try_num
- try_num = 1 << 8;
- while ((try_num != 0) && ((P[i][j].maybe & try_num) == 0)) {
- try_num >>= 1;
- }
- } else if (state_code == 'NEXT_TRY') {
- }
- if (try_num == 0) {
- throw 'BUG: try_num == 0';
- } else {
- // TRYFILL
- schPath.unshift({type: 'FILL_POS', oldFill: P[i][j].fill, row: i, col: j, fillValue: try_num, fillValue_fact: get_fill_intuitive(try_num), oldChoose: P[i][j].choose, oldMaybe: P[i][j].maybe});
- if (P[i][j].fill == 0)
- cntEmptyCell -= 1;
- P[i][j].choose = 1;
- P[i][j].maybe = try_num;
- P[i][j].fill = try_num;
- for (let u = 0; !fail_flag && (u < 9); u++)
- if ((u != i) && (P[u][j].fill == 0)) {
- if ((P[u][j].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- // 搜索栈压栈
- schPath.unshift({type: 'SET_MAYBE', row: u, col: j, oldMaybe: P[u][j].maybe});
- P[u][j].choose -= 1;
- if (P[u][j].choose < minchoose) {
- minchoose = P[u][j].choose;
- i_minchoose = u;
- j_minchoose = j;
- }
- maybe = P[u][j].maybe &= ~(P[i][j].fill);
- if (maybe == 0) {
- fail_flag = true;
- break;
- }
- }
- }
- for (let v = 0; !fail_flag && (v < 9); v++) {
- if ((v != j) && (P[i][v].fill == 0)) {
- if ((P[i][v].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- // 搜索栈压栈
- schPath.unshift({type: 'SET_MAYBE', row: i, col: v, oldMaybe: P[i][v].maybe});
- P[i][v].choose -= 1;
- if (P[i][v].choose < minchoose) {
- minchoose = P[i][v].choose;
- i_minchoose = i;
- j_minchoose = v;
- }
- maybe = P[i][v].maybe &= ~(P[i][j].fill);
- if (maybe == 0) {
- fail_flag = true;
- break;
- }
- }
- }
- }
- if (!fail_flag) {
- g = P[i][j].block;
- // 3X3 块的左上角坐标
- r = Math.floor(g / 3) * 3;
- c = g % 3 * 3;
- for (let u = 0; !fail_flag && (u < 3); u++)
- for (let v = 0; !fail_flag && (v < 3); v++) {
- if (!(r + u == i && c + v == j) && (P[r + u][c + v].fill == 0)) {
- if ((P[r + u][c + v].maybe & P[i][j].fill) != 0) { // 按位与必须括起来, 它比不等号优先级低
- // 搜索栈压栈
- schPath.unshift({type: 'SET_MAYBE', row: r + u, col: c + v, oldMaybe: P[r + u][c + v].maybe});
- P[r + u][c + v].choose -= 1;
- if (P[r + u][c + v].choose < minchoose) {
- minchoose = P[r + u][c + v].choose;
- i_minchoose = r + u;
- j_minchoose = c + v;
- }
- maybe = P[r + u][c + v].maybe &= ~(P[i][j].fill);
- if (maybe == 0) {
- fail_flag = true;
- break;
- }
- }
- }
- }
- }
- for (let u = 0; u < 9; u++)
- for (let v = 0; v < 9; v++) {
- if (!(u == i && v == j) && P[u][v].fill == 0) {
- if (P[u][v].choose < minchoose) {
- minchoose = P[u][v].choose;
- i_minchoose = u;
- j_minchoose = v;
- }
- }
- }
- if (COUNT_EmptyCell() != cntEmptyCell) {
- throw 'BUG: COUNT_EmptyCell = ' + COUNT_EmptyCell();
- }
- }
- if (fail_flag) {
- state_code = 'NEXT_TRY';
- } else {
- state_code = 'NEW_POS';
- }
- }
- } while ((true || (loopcnt < LOOPCNT_CTRL)) && (schPath.length > 0 || (!fail_flag && state_code == 'NEXT_TRY' && try_num != 0)));
- function print_choose_num() {
- console.log('\n\n\n' + 'print_choose_num:' + '\n\n');
- for (let i = 0; i < 9; i++) {
- let line = i + ': ';
- for (let j = 0; j < 9; j++) {
- line += ((P[i][j].fill != 0) ? '+' : P[i][j].choose) + ' ';
- }
- console.log(line);
- }
- }
- function print_maybe_bin() {
- console.log('\n\n\n' + 'print_maybe_bin:' + '\n\n');
- for (let i = 0; i < 9; i++) {
- let line = i + ': ';
- for (let j = 0; j < 9; j++) {
- line += ('000000000' + P[i][j].maybe.toString(2)).slice(-9).replace(/0/g, '_') + ' ';
- }
- console.log(line);
- }
- }
- function print_block_num() {
- for (let i = 0; i < 9; i++) {
- let line = i + ': ';
- for (let j = 0; j < 9; j++) {
- line += ', ' + P[i][j].block;
- }
- console.log(line);
- }
- }
- function print_fill_bin() {
- console.log('\n\n\n' + 'print_fill_bin:' + '\n\n');
- for (let i = 0; i < 9; i++) {
- let line = i + ': ';
- for (let j = 0; j < 9; j++) {
- line += ('000000000' + P[i][j].fill.toString(2)).slice(-9).replace(/0/g, '_') + ' ';
- }
- console.log(line);
- }
- }
- function print_fill_intuitive() {
- console.log('\n\n\n' + 'print_fill_intuitive:' + '\n\n');
- for (let i = 0; i < 9; i++) {
- let line = i + ': ';
- for (let j = 0; j < 9; j++) {
- line += get_fill_intuitive(P[i][j].fill) + ' ';
- }
- console.log(line);
- }
- }
- function COUNT_EmptyCell() {
- let sum = 0;
- for (let i = 0; i < 9; i++)
- for (let j = 0; j < 9; j++)
- if (P[i][j].fill == 0)
- sum++;
- return sum;
- }
- function get_fill_intuitive(y) {
- if (y == 0) {
- return '_'
- } else
- return (Math.round(Math.log(y) / Math.log(2)) + 1);
- }
- function print_state() {
- console.log('\n\n\n' + 'BEGIN print_state:' + '\n\n');
- print_fill_intuitive();
- print_fill_bin();
- print_choose_num();
- print_maybe_bin();
- console.log('\n\n\n' + 'END print_state.' + '\n\n');
- console.log('\n\n\n' + 'loopcnt = ' + loopcnt);
- }
- function print_choose_state() {
- console.log('\n\n\n' + 'BEGIN print_choose_state:' + '\n\n');
- print_choose_num();
- print_maybe_bin();
- console.log('\n\n\n' + 'END print_choose_state.' + '\n\n');
- console.log('\n\n\n' + 'loopcnt = ' + loopcnt);
- }
- function PA_STR() {
- let t = problem;
- for (let i = 0; i < 9; i++)
- for (let j = 0; j < 9; j++)
- t += get_fill_intuitive(P[i][j].fill);
- return t;
- }
- /*
- 搜索算法
- 数组存储
- P 二维数组 9 行 X 9 列,
- 元素为对象 引用方式: P[行号,列号]
- {
- fill: 填数 -- 0 为未填,否则为已填的数值,
- maybe: 可选数的完全可能 -- 以2进制位表达,右至左数第1位表示可选1,第2位表示可选2,...第9位表示可选9, 当此属性值为0x1FF表示1~9全部可选,
- 当有任意一个位置的 maybe 为 0 时, 说明最后试填的数失败, 必须撤回
- choose: 可选数的数目 -- 也就是 maybe 的所有二进制位上 '1' 的总数,
- block: 区块号 -- 值范围[0..8]
- };
- cntEmptyCell -- 未填数单元格计数
- 解成功判断: if (cntEmptyCell == 0) 成功, 输出结果并退出
- 最大关联位置 -- 以当前线索简单判断最少可能选择的位置
- 节点状态:
- NEW_POS: 填数未失败,新位置填第一个试数
- NEXT_TRY: 失败换填下一个试数
- UNDO_POS: 所有试数失败撤消填数
- 初始化题面并找出最大关联位置
- 节点状态 = NEW_POS
- 试填失败标志: fail_flag = false
- :loop
- if (fail_flag == true) {
- 撤消搜索栈顶的所有 SET_MAYBE 操作并 弹栈搜索栈
- 撤消 FILL_POS 操作 弹栈搜索栈
- 如果 当前 处理位置还有可试填的其他数值可能(同时设置好下一个试填数值),
- fail_flag = false;
- 节点状态 = 'NEXT_TRY';
- 否则
- fail_flag = true;
- 节点状态 = 'UNDO_POS';
- } else {
- if (节点状态 == 'NEW_POS') {
- 检测解出是否成功(成功则输出并退出程序)
- 操作位置设为最大关联位置
- 找出操作位置上第一个可选数值(0x100 --> 0x1 的次序)
- }
- 执行 FILL_POS 操作 并 压栈搜索栈, 将同行同列同区块的 maybe 值作相应处理 并 压栈搜索栈, 找出所有未填数单元格中的 最大关联位置
- 处理 maybe 值时 如果 发现无解 (任意一个位置的 maybe == 0), 则 设置失败标志 fail_flag = true
- }
- 当 搜索栈未空 或 (fail_flag 为假 且 节点状态 == 'NEXT_TRY' 且 存在可试填数)
- goto :loop
- 搜索栈结构:
- 结点: {type: FILL_POS 或 SET_MAYBE, row:行坐标, col:列坐标, oldMaybe: Maybe原值, fillValue}
- type 为 FILL_POS 时, 有 fillValue 值
- fillValue 可能的值: 从 2 ** 8 (256) 0X100 开始 依次 >> 1 位, 直到 1, 不包括 0
- */
- </script>
复制代码
作者: 523066680 时间: 2017-10-10 11:55 标题: RE: [挑战]解数独程序与数独题目生成 —— Dancing Links 算法
本帖最后由 523066680 于 2017-10-10 14:25 编辑
Rosettacode 上面有一段js的示例,代码较长不粘贴了
http://rosettacode.org/wiki/Sudoku#JavaScript
效率是很高,但是实现细节有问题,某些题型会崩溃- sudoku_nd3.txt
- //'7.56...19........89....8.....81.2.7...13..4.237...5.9.8.3..1.25...5....41........',
- //'.....4...7.......2.....61.....2.......4...3..8..79.6....78....9.36........1......',
- //'...3.1...49......638.......1.5..7.......9...8.........6...4...........5...3...71.',
-
- sudoku_nd4.txt
- //'......3......2.1..1.84.9.....7....2..3.6...7...6.7...8....5846.2........9..1.....',
- //'.....53..6.....5.8...1...2.45.8...1.3.....4.5..2.........2.18....7.3..6..2...4...',
- //'....9..3...5..2.4.7.94....13.1....98.4.9........8..6..2...13..7..36...151....9...',
复制代码
开始我以为是 js 限制递归层数太少,用Perl和C分别实现后发现主要还是和实现有关,递归回溯过程的数据处理写对了就不会有崩溃的情况。
顺便贴一些相关的:
Python 版DLX实现
http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html- #!/usr/bin/env python3
- # http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html
-
- # Author: Ali Assaf <ali.assaf.mail@gmail.com>
- # Copyright: (C) 2010 Ali Assaf
- # License: GNU General Public License <http://www.gnu.org/licenses/>
-
- from itertools import product
-
- def solve_sudoku(size, grid):
- R, C = size
- N = R * C
- X = ([("rc", rc) for rc in product(range(N), range(N))] +
- [("rn", rn) for rn in product(range(N), range(1, N + 1))] +
- [("cn", cn) for cn in product(range(N), range(1, N + 1))] +
- [("bn", bn) for bn in product(range(N), range(1, N + 1))])
- Y = dict()
- for r, c, n in product(range(N), range(N), range(1, N + 1)):
- b = (r // R) * R + (c // C) # Box number
- Y[(r, c, n)] = [
- ("rc", (r, c)),
- ("rn", (r, n)),
- ("cn", (c, n)),
- ("bn", (b, n))]
- X, Y = exact_cover(X, Y)
- for i, row in enumerate(grid):
- for j, n in enumerate(row):
- if n:
- select(X, Y, (i, j, n))
- for solution in solve(X, Y, []):
- for (r, c, n) in solution:
- grid[r][c] = n
- yield grid
-
- def exact_cover(X, Y):
- X = {j: set() for j in X}
- for i, row in Y.items():
- for j in row:
- X[j].add(i)
- return X, Y
-
- def solve(X, Y, solution):
- if not X:
- yield list(solution)
- else:
- c = min(X, key=lambda c: len(X[c]))
- for r in list(X[c]):
- solution.append(r)
- cols = select(X, Y, r)
- for s in solve(X, Y, solution):
- yield s
- deselect(X, Y, r, cols)
- solution.pop()
-
- def select(X, Y, r):
- cols = []
- for j in Y[r]:
- for i in X[j]:
- for k in Y[i]:
- if k != j:
- X[k].remove(i)
- cols.append(X.pop(j))
- return cols
-
- def deselect(X, Y, r, cols):
- for j in reversed(Y[r]):
- X[j] = cols.pop()
- for i in X[j]:
- for k in Y[i]:
- if k != j:
- X[k].add(i)
-
- grid = [
- [0,0,0,4,0,2,0,0,0],
- [0,0,0,0,0,5,0,0,3],
- [1,0,0,0,7,0,0,9,6],
- [6,0,0,0,3,0,0,0,0],
- [0,0,0,0,0,0,2,0,0],
- [0,0,4,0,0,0,7,0,0],
- [0,0,0,0,9,0,0,0,0],
- [0,0,0,0,0,0,0,0,1],
- [0,0,5,7,0,4,0,0,0]]
-
- for solution in solve_sudoku((3, 3), grid):
- print(*solution, sep='\n')
复制代码
跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
算法实践——舞蹈链(Dancing Links)算法求解数独
17提示数的题库资源
四万多道17提示数的数独题
用C链表实现的DLX算法,加-O2编译优化,i7 CPU,printf不计入,解这四万多题只要3-6秒。
(参考算法实践——舞蹈链(Dancing Links)算法求解数独 最后一个评论,这个人用C重新实现,也是3秒。)
作者: happy886rr 时间: 2017-10-10 14:06
回复 22# 523066680
太牛叉了,4万道6秒。
作者: 523066680 时间: 2017-10-11 12:14
本帖最后由 523066680 于 2017-10-17 11:00 编辑
正在学着用 github,代码已提交
https://github.com/vicyang/Sudoku/tree/master/Solver/DancingLinks
ChinaUnix 的rubyish把他的方案也写成了C版本,我在上面套了 fill_one_possible_num 函数 后,解sudoku17.txt 也是6秒,
在 i7 cpu 主机上面,3秒
Rubyish/solve_multiGame.c
作者: happy886rr 时间: 2017-10-11 12:49
回复 24# 523066680
不错,代码整理的很整齐。方便今后他人研究分析。
作者: CrLf 时间: 2017-10-11 13:39
回复 22# 523066680
那个算法666,看来把人脑的算法套用给电脑,的确不合适
欢迎光临 批处理之家 (http://www.bathome.net/) |
Powered by Discuz! 7.2 |